Viability of Low Temperature Deep and Ultra Deep Submicron Scaled Bulk nMOSFETs on Ultra Low Power Applications

نویسندگان

  • Subhra Dhar
  • Manisha Pattanaik
  • P. Rajaram
  • S. Dhar
چکیده

Chip cooling is an attractive option for leakage control and power as well as thermal management of high performance ICs. Subthreshold leakage being the main leakage contributor in nanoscale CMOS, it rapidly increases with scaling due to continuous reduction in the supply voltage and is highly temperature sensitive. The authors in this work investigate Si bulk nMOSFETs using both constant voltage scaling as well as constant field scaling rules where temperature is employed as a design variable to improve subthreshold characteristics in the deep and ultradeep submicron regions of operation. Devices of gate lengths 90nm, 65nm in the deep submicron, and 45nm, 32nm in the ultradeep submicron region are designed using 2D Silvaco ATLAS device simulator. Encouraging subthreshold characteristics in the 150K-300K range are achieved. The optimum temperature at which these scaled devices would produce best subthreshold slope and maximum reduction in the OFF state leakage current is also suggested. Minimizing power consumption than pure subthreshold operation being a major concern, standby power is estimated at the optimized temperature to compare the scaling effects. This work recommends the 45nm device to be used for both ULP and HP applications at 200K.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relevance of Grooved Nmosfets in Ultra Deep Submicron Region in Low Power Applications

To manage the increasing static leakage in low power applications, solutions for leakage reduction are sought at the device design and process technology levels. In this paper, 90nm, 70nm and 50 nm groovedgate nMOS devices are simulated using Silvaco device simulator. By changing the corner angle and adjusting few structural parameters, static leakage reduction is achieved in grooved nMOSFETS i...

متن کامل

Building ultra-low-power high-temperature digital circuits in standard high-performance SOI technology

0038-1101/$ see front matter 2008 Elsevier Ltd. A doi:10.1016/j.sse.2008.06.045 * Corresponding author. Tel.: +32 10 47 8134; fax: E-mail addresses: [email protected] (D. Bo vain.be (R. Ambroise), [email protected] ( [email protected] (J.-D. Legat). For ultra-low-power applications, digital integrated circuits may operate at low frequency to reduce dynamic power consumption. At high ...

متن کامل

Finfet Based Sram Design for Low Power Applications

Industry demands Low-Power and HighPerformance devices now-a-days. Among the various embedded memory technologies, SRAM provides the highest performance along with low standby power consumption. In CMOS circuits, high leakage current in deep-submicron regimes is becoming a significant contributor to power dissipation due to reduction in threshold voltage, channel length, and gate oxide thicknes...

متن کامل

Enhanced Leakage Control in Scaled 45nm nMOS Devices using SiO2 and Si3N4

Gate-leakage reduction is the key motivation for the replacement of SiO2 with alternative gate dielectrics. 45nm gate length scaled grooved and bulk nMOSFETs are evaluated to bring out the most compatible and power saving dielectric option using Si3N4 and SiO2 using Silvaco ATLAS device simulator. At the scaled thickness, SiO2 controls the leakage better than Si3N4, whereas at increased thickne...

متن کامل

Ultra Low Power Symmetric Pass Gate Adiabatic Logic with CNTFET for Secure IoT Applications

With the advent and development of the Internet of Things, new needs arose and more attention was paid to these needs. These needs include: low power consumption, low area consumption, low supply voltage, higher security and so on. Many solutions have been proposed to improve each one of these needs. In this paper, we try to reduce the power consumption and enhance the security by using SPGAL, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011